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LETCER TO THE EDITOR 

Two electrons in a one-dimensional ‘rock salt’ lattice with two 
types of on-site electron-electron correlation 

A S Alexandrovt, S V Paven and P E Kornilovich 
Moscow Engineering Physics Institute, Mosmw, 115409, Russia 

Received 17 September 1991 

AbstrscL The problem of two eieclrons on a onedimensional (ID) lattice is solved for 
the case when the lattice unit cell contains two unequivalent siles a and b with two 
corresponding eleclron-elecmn correlation potentials: attractive W. and repulsive U,. 
It is s h m ,  that the kinematics of lhe eleclron4ectmn scattering in such a sysrem 
are remarkably different from those of the ordinmy ID Hubbard model because of the 
presence of the Umklapp prosesses Anamical properties of fhe S-matrix are studied. 
Ground slate properties and excitation spectrum are analysed as functions of U. and 
Ub, 

Experimental evidence that electron correlations may play an essential role in the 
high-temperature cuprate superconductors stimulated much theoretical work on highly 
correlated systems. Thus, the discovery of the presence of magnetic momens in most 
of the high-T, materials together with the proposal the of the RVB theory [I], based 
on the Anderson theory of magnetism in transition 3d metals, were followed by 
intensive study of the two-dimensional Hubbard model with large positive U. Since 
spectroscopic experiments showed mainly p-@e symmetry of the holes in the metallic 
regime of the cuprates [Z] and Emery suggested strong hybridization of electron 3d 
orbitals on Cu and 2p orbitals on 0 [3], much theoretical work has been devoted to 
the extended Hubbard model and the corresponding t-J model, proposed by Rice 
and co-workers [4]. 
On the other hand, several theories assuming local attraction between electrons 

have been suggested to describe high-Tc superconductivity. In these theories electrons 
interact by means of boson exchange of various kinds. Such bosons can be phonons 
(for review see [SI), magnons [6,7J, excitons [SI, acoustic plasmons [9] etc. Regardless 
of the nature of such attraction, mathematically this type of theory can be described 
by a negative3 Hubbard model. 

The possibility of having both such types of electron correlation brought to life a 
hypothetical model with two correlation potentials: repulsion on copper and attrac- 
tion on oxygen. There have already been some attempts to employ such a model 
to describe properties of high-temperature metal oxides [IO, 111, but the approach 
used to obtain pair formation was the mean-field approximation, which may be not 
satisfactory in the case of sufficiently strong local attraction between particles. One 
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should mention, of course, that mathematical ditliculties, arising in the analysis even 
of the ordinary (one type of U) Hubbard Hamiltonian and even in two dimensions 
are enormous. In one dimension, however, exact solution is possible sometimes, as 
was done, for example, by Lieb and Wu [12] for the simple Hubbard chain, with the 
help of the Bethe ansutz, based on the Bethe hypothesis [13], that a N-particle wave 
function in one dimension can be described by a series of plane-wave exponents with 
coefficients to be determined from the two-particle S-matrix. From the physical point 
of view, this is closely related to the fact that the energy and momentum conserva- 
tion laws lead to the conservation of the one-particle momenta in onedimensional 
scattering of two identical particles, i.e. the corresponding our-momenta are the same 
as in-ones: (plp,)oy' = ( p , ~ , ) ~ ~  or ( p , ~ , ) " .  AS a result, exact properties of a 
many-particle system can be derived from the analysis of two-particle scattering. 

The purpose of the present letter is to investigate the two-particle problem for a 1~ 
'rock salt' lattice (i.e. a chain, containing two sorts of unequivalent sites a and b) with 
two types of electron-electron correlations on the corresponding neighbouring sites: 
attractive, U,, and repulsive, U,. After constructing a two-electron wave function 
obeying translational properties of the lattice we determine the S-matrix of two- 
particle scattering. We also analyse the ground-state properties and excitations for 
various U, and U,. 

We choose the tight-binding approximation form for the initial Hamiltonian: 

m 

where index m denotes the unit cell number with the coordinates of a and b sites 
equal to &) = 2 m  and db) = 2m + 1 correspondingly (lattice parameter equals 2); 
t is the hopping integral between neighbouring sites. For simplicity we set the energy 
difference between atomic levels a and b to zero: E. - cb N 0. We will also use the 
following parameterization for t and correlation potentials U, and U,: 

t = 1  U* = -a and U, = p. 
The one-electron spectrum of the Hamiltonian, equation (l), consists of two bands 
E1,2(k) = rf2cosk with quasi-momentum k lying in the first Brillouin zone: -n /2 < 
k 6 n/2. Corresponding eigenfunctions are twocomponent Bloch amplitudes: 

It is convenient to describe the one-electron state by a set of quantum numbers 
IC = ( n ; k ) ,  where n = l(2) is the band index denoting the lower (upper) band. 
In the following we will call these quantum numbers quasi-momenta and use b and 
e(&) instead of k and E ~ , ~ ( / C )  in our equations. 

The two-electron state, characterized by the total quasi-momentum K and the 
total energy E, can be described as a superposition of pairs of one-electron states with 
quasi-momenta (fclbz) and (QlGZ), satisfying the energy and momentum conservation: 
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where G = ?i is the inverse lattice vector. Appearence of G in equation (3) reflects 
the fact that the total momentum of the two-particle system should be always reduced 
to the first Brillouin zone, where the physically different values of the total quasi- 
momentum K lie. Depending on the values of E and K, there are three possible 
types of solution of equation (3), (as illustrated by figure 1): (i) if the total energy 
E lies in the interval 41sin(1</2) I 4 IEl 6 4cos( K/2) ,  (undashed area on figure l), 
then only solutions of the left-hand side system of equation (3) exist, giving a pair of 
two quasi-momenta (ktkZ), describing two one-partide states in the same band, i.e. 
nl = n2. With the energy E and momentum K satisfying: (U) 2lsin(K) I < /El 6 
4lsin(A'/2) I or ( i )  IEl 6 2lsin (A') I, (two dashed areas on figure 1) the two-particle 
state includes two pairs of one-particle states: (ktk2) and ( ~ t 4 z )  (solutions of the 
corresponding systems of equation (3)) with the same (case (ii)) or different (case 
(iii)) band indexes, i.e. nl # n2. 

-I - 4 2  ' b 7712 
Total quasi-momentum K 

Figure 1. Wo-electron slater and the bound singlet stales of two electrons. Undashed 
areas indicate the energy spectrum of lriplet two.electron states (with singlet slates lying 
only along the border). The two dashed areas compond to the lwo-electron states, for 
which both Ihe systems, equation (Z), are soluble. The bound slates energy specmm for 
01 = 3, @ = 5 is shown by the solid NNe. 

The two-particle S-matrix can be obtained by solving Shrodinger's equation, which 
is a matrix equation for the four-component wave function qu,o,(zl, 1:). Then, the 
most general form of the two-electron wave function is given by the dxect product 
of the one-electron wave functions, equation (2): 

Q0,,Jz1 < 4 = A, , .~ (~ l~2)GJlk , (" , )Gg2(~2)  - ~ u , u ~ ~ ~ 2 ~ t ~ G ~ * ~ ~ l ~ G g , ~ ~ 2 ~  

Q'ol,2(zl > 2 2 )  = A u 2 u , ( ~ 2 ~ 1 ) G g , ( ~ , ) G ~ 2 ( ~ 2 )  - A , , , , ( ~ , ~ 2 ) G ~ 2 ( 2 , ) G g , ( + 2 )  

+ A,,, (4622) T$, ("I)+& (4 - A,, d 4241) G&( X I  Mi, ( 4 

+ A,,,, ( ~ 2 4 t ) + i , ( r l ) S . & ( 4  - (4142)$&(zI )GG, (9) 

(4) 

where pairs of one-particle quasi-momenta and (el&) are determined from 
equation (3). It is easy to show that the wave function, equation (4), satisfies the 
Shrodinger equation for any z1 $ zz. The corresponding eigenvalue E is given by 
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equation (3). From the continuity of Q,,,z(z,,zz) at zI = z2, the two following 
equations for coefficients A can be easily derived 

(5) 
A,,,z(h~b) - Au,uz(&) = AU2,,(hi i )  - A U z , , ( ~ ~ ~ z )  

AOlur(4l4Z) - Aotut(G241) = Au2,1(Gz4*) - Auzu,(4142). 
Finally, our wave function must satisfy the Shdidinger equations with the same ene ra  
E (which follows from equation (1)) at z1 = q, when the electrons have the same 
coordinates. The corresponding equations for the sites a and b of the unit cell m are 
of the form: 

- { W,,,,(2m,2m - 1) + Q0,,22(2m - 1,Zm) t Q0,,2(2m,2m + 1) 

+Qu,,1(2m+1,2m)}-~6,,,-,,Q,,,,(2m,2m) = E*,,,2(2m, 2m) 
(6) 

+ QU,,,(2m,2m + 1)) + @5 

-{~ , , , , ( 2m+1 ,2m+2)  t ~ , , u . 2 ( 2 m t 2 , ~ m + 1 ) - t - ~ , , u z ~ ~ m +  1,2m) 

QuIu2(2m + 1,2m + 1) 
= EQ,,u2(2m + 1,2m + 1). 

Equations ( 5 )  and (6) must be solved now as a set of four linear equations on eight 
undefined coefficients A in equation (4). As a result of the solution, we determine 
four of these constants as linear combinations of the others: 
A,,,, (hit) = s$$ I (  R1 Q( 414z)I A,;,;( LI i2) 

(7) -,!U' + so;,; I (  4 id(  4142 )Mu;,;( 41 G2) 

(expressions for A , , , j ( ~ i q j )  are the same as those in equation (7) after the substitu- 
tion h U 4). Here we assume summation over spin indexes a; and d! Coeficients 
Sgj$ and 2?$! have the physical meaning of S-matrices of electrorrelectron scat- 
tering. While s$: describes process& with conservation of the initial one-particle 
momenta kI and kZ (electrons exchange their quasi-momenta), 2?$: corresponds 
to the UmWapp processes, in which the total momentum IC, + IC2 is reduced by the 
magnitude of the inverse lattice vector G = T, so that the our-momenta G1 and eZ 
are to be determined from equation (3). 'RI write down the explicit form of matrices 
S and 5 it is convenient to use the following parameterization of the one-particle 
momenta: 

l i  = &in(ICi) and p i  = fsin(qi) 
where signs +(-) correspond to the band indexes ni = 1(2), respectively. 

-u'd With such parameterization, solutions for matrices S$! and S.:.; are given by: 
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where 11 = p+ a / 2 ,  E = a - P / 2 ,  1 = I ,  - 1 ,  and p, = p, -p , .  
For p = -a, corresponding to the w e  of a ID lattice. with one type of electron 

correlation (simple Hubbard chain), S vanishes and for S we obtain the well-known 
result of Lieb and Wu [12]. 

Matrices S$i and So;.,; provide a complete picture of electron4ectron scat- 
tering on a onedimensional lattice. with two types of electron-electron correlation. 
The kinematics of the scattering in terms of l i  and p, follow from the consenation 
laws, equation (3), i.e. p,  and p, are related to I, and 1, as follows: 

-0'd 

Here the upper (lon*er) sign corresponds to the same (different) one-electron band 
indexes: nl = n, = n; = n; (n, # n, and ni # ni). 

If the initial one-particle momenta 6,  and 6, describe electrons in the same band 
(i.e. n, = n,) and parameters 1 ,  and I, satisfy 

( 1 ,  + l , ) ,  < 4J1-1: j- (10) 
then solutions for p,  and p,, derived from equation (9), are complex, with non- 
zero imaginary parts. lb eliminate the corresponding divergent terms, arising from 
exponents with complex quasi-momenta 4, and 4, in the expression for our wave 
function, equation (4), we set A O , O J ( G , ~ J )  = A U s 0  ,(@ J q  * i )  = 0, and for four other 
constants A we immediately get: 

Au,,,(616Z) = AUle2(6,6,)  = C") + C(')6- . 
k,& 

(i16,) = C(T) - C(s)6. . A u t 0 , ( ~ z ~ , )  = Auzo, klrk2' 

(11) 

Here coefficients C(v and dS) define respectively anti-symmetric (triplet) and sym- 
metric (singlet) parts of the two-electron coordinate wave function, given by equa- 
tion (4). The corresponding region of two-electron states is shown on figure l, where 
only triplet states exist within the undashed area, and singlet states with 6, = ,&, are 
realized on its border. For the rest of the pairs (those which do not satisfy 
equation (10)) solutions p,  and pz, derived from equation (9) are real, so that the 
corresponding momenta Q, and G2 together with and 6, represent the set of the 
our-states, into which the initial electrons with momenta k1, 6, can be scattered. 

We can now investigate the ground-state and low-energy excitations of our two- 
particle system. If one of the electron-electron correlation potentials corresponds to 
the on-site attraction, singlet bound states of two electrons exist in the system. The 
energy spectrum E( IC) of these states can be obtained from the poles of S-matrix. 
The corresponding equation, derived from equation (8), is of the form: 

Cr-7 E, - 16cosz- E2 - 16sin - 

+- 2 

('2) 
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Each such bound state is formed by two pairs of complex one-particle momenta (the 
so-called sfrings, discussed in [14]): 

where E = -4cosK/2cothy = -4lsinIC/2lcothj. The corresponding spectrum, 
derived from equation (12) for Q = 3 and @ = 5, is shown on figure 1. 

Analysis of equation (12) shows that, whereas for the values of the total momen- 
tum lying near the Brillouin zone boundary, solutions of equation (12) exist even for 
arbitrary weak attraction, the ground state (with K = 0) will be a bound state only 
if a and p obey: 

In the opposite case the ground state will be a non-bound state of two electrons with 
quasi-momenta I C ,  = = 0. It follows from (4) and (11) that the corresponding 
two-particle state will be a singlet, in agreement with the theorem proved by Lieb 
and Mattis [15]. Figure 2 shows two corresponding regions on the (a,@)-plane. 

Repulsive potential p 

Figure 2. The ground-state phase diagram 

In conclusion, we have analysed the two-electron problem for a chain with two 
sorts of on-site electron-electron correlation: attractive Us and repulsive U, on the 
neighbouring sites a and b, respectively. The S-matrix of electron-electron scatter- 
ing was derived. It was shown that translational properties of the lattice result in 
remarkably different (from that of the simple Hubbard chain) kinematics of electron- 
electron scattering. Presence of the Umklapp processes leads to the appearence of 
extra (in addition to thase participating in the scattering as hirial) oneelectron mo- 
menta. It does not rule out, of course, the possibility of obtaining an exact solution 
to the many-electron problem, but the ordinary Bethe a m a ~  should be modified to 
account for additional one-particle quasi-momenta which will subsequently appear in 
the N-particle wave function. 

We have also investigated ground-state properties of such a two-electron system 
and obtained the ground-state phase diagram (see figure 2). Equation (13) indicates 
that the ground-state properties of the system with both types of electron-Aectron 
interaction (attractive and repulsive) depend on competition between the correlation 
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potentials. It may happen that for a many-particle system this competition can result 
in dependence of the ground-state properties upon the total concentration of particles. 
Thus, if the bare correlation energies in the Hamiltonian, equation (1). are such that 
(a,@) lie near the critical curve, equation (13), renormalization of the interaction, 
which can arise from doping of the system by additional electrons, will lead to the 
dramatic change in the ground-state properties, for example, to the decay of initially 
bound pairs. As a result, the system would lose its superconducting properties, 
associated with formation of the bound states. We believe that this phenomenon, 
if exists, could be an explanation for the disappearance of superconductivity with 
doping, as observed in high-T, cuprate superconductors. 

We would l i e  to thank Dr M A Baranov and our colleagues on the HTSC seminar 
of the Moscow Engineering Physics Institute for useful and helpful discussions. 
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