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LETTER TO THE EDITOR

Two electrons in a one-dimensional ‘rock salt’ lattice with two
types of on-site electron—electron correlation

A S Alexandrovi, § V Traven and P E Kornilovich

Moscow Engineering Physics Institute, Moscow, 115409, Russia
Received 17 September 1991

Abstract. The problem of two electrons on a onc-dimensional (1) lattice is solved for
the case when the lattice unit cell contains two unequivalent sites a and b with two
corresponding electron—electron correlation potentials: attractive Uy and repulsive U,.
It is shown, that the kinematics of the clectron—electron scattering in such a system
are remarkably different from those of the ordinary 10 Hubbard model because of the
presence of the Umklapp processes. Analytical properties of the S-matrix are studied.
Ground state propertics and excitation spectrum are analysed as functions of U, and
V.

Experimental evidence that ¢lectron correlations may play an esseatial role in the
high-temperature cuprate superconductors stimulated much theoretical work on highly
correlated systems. Thus, the discovery of the presence of magnetic moments in most
of the high-T, materials together with the proposal the of the RVB theory [1], based
on the Anderson theory of magnetism in transition 3d metals, were followed by
intensive study of the two-dimensional Hubbard model with large positive U. Since
spectroscopic experiments showed mainly p-type symmetry of the holes in the metallic
regime of the cuprates [2] and Emery suggested strong hybridization of electron 3d
orbitals on Cu and 2p orbitals on O [3], much theoretical work has been devoted to
the extended Hubbard model and the corresponding ¢—J model, proposed by Rice
and co-workers [4].

On the other hand, several theories assuming local attraction between electrons
have been suggested to describe high-T,, superconductivity. In these theories electrons
interact by means of boson exchange of various kinds. Such bosons can be phonons
(for review see [5]), magnons [6,7], excitons [8], acoustic plasmons [9] etc. Regardless
of the nature of such attraction, mathematically this type of theory can be described
by a negative-I/ Hubbard model.

The possibility of having both such types of electron correlation brought to life a
hypothetical model with two correlation potentials: repulsion on copper and attrac-
tion on oxygen. There have already been some attempts to employ such a model
to describe properties of high-temperature metal oxides [10,11], but the approach
used to obtain pair formation was the mean-field approximation, which may be not
satisfactory in the case of sufficiently strong local attraction between particles. One
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should mention, of course, that mathematical difficulties, arising in the analysis even
of the ordinary (one type of U) Hubbard Hamiltonian and even in two dimensions
are enormous. In one dimension, however, exact solution is possible sometimes, as
was done, for example, by Lieb and Wu [12] for the simple Hubbard chain, with the
help of the Bethe ansaiz, based on the Bethe hypothesis [13], that a N-particle wave
function in one dimension can be described by a series of plane-wave exponents with
coefficients to be determined from the two-particle S$-matrix. From the physical point
of view, this is closely related to the fact that the energy and momentum conserva-
tion laws lead to the conservation of the one-particle momenta in one-dimensional
scattering of two identical particles, i.e. the corresponding out-momenta are the same
as in-ones: (p,p,)°" = (p,p,)™ or (p,p,)™. As a result, exact properties of a
many-particie system can be derived from the analysis of two-particle scattering.

The purpose of the present letter is to investigate the two-particle problem for a 1D
‘rock salt’ Jattice (i.e. a chain, containing two sorts of unequivalent sites a and b) with
two types of electron—electron correlations on the corresponding neighbouring sites:
attractive, U,, and repulsive, U,. After constructing a two-electron wave function
obeying translational properties of the lattice we determine the S-matrix of two-
particle scattering. We also analyse the ground-state properties and excitations for
various U, and U,

We choose the tight-binding approximation form for the initial Hamiltonian;

'H ==t Z{azno'bm-lcr + bIﬂcam+la + aInabma + bzno'am.a'}
m
+ Y {U,ndnh + Upn®ynt, |} (1)
"

where index m denotes the unit cell number with the coordinates of a and b sites
equal to 2 = 2m and =® = 2m + 1 correspondingly (lattice parameter equals 2);
t is the hopping integral between neighbouring sites. For simplicity we set the energy
difference between atomic levels a and b to zero: ¢, — g, ~ 0. We will also use the
following parameterization for ¢ and correlation potentials U, and U,:

t=1 U,=-a and U,=4.

The one-electron spectrum of the Hamiltonian, equation (1), consists of two bands
&) 2( k) = F2cosk with quasi-momentum k lying in the first Brillouin zone: —x /2 g
k < w/2. Corresponding eigenfunctions are two-component Bloch amplitudes:

o) = (op ) ™. @)

It js convenient to describe the one-electron state by a set of quantum numbers
k = (n;k), where n = 1(2) is the band index denoting the lower (upper) band.
In the following we will call these quantum numbers quasi-momenta and use k and
(k) instead of k and e, ;(k) in our equations.

The two-electron state, characterized by the total quasi-momentum K and the
total energy .E, can be described as a superposition of pairs of one-electron states with
quasi-momenta (k; k,) and (4, 4,), satisfying the energy and momentum conservation:

{K=k1+kz {K=Q1+Q:zic

E=c(h)+e(hy 2™ E =e(3) + =(d;) )
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where G = = is the inverse lattice vector. Appearence of G in equation (3) reflects
the fact that the total momentum of the two-particle system should be always reduced
to the first Brillouin zone, where the physically different values of the total quasi-
momenturn K lie. Depending on the values of £ and K, there are three possible
types of solution of equation (3), (as illustrated by figure 1): (i) if the total energy
E lies in the interval 4jsin (K /2) | € | E] £ 4cos (K/2), (undashed area on figure 1),
then only solutions of the left-hand side system of equation (3) exist, giving a pair of
two quasi-momenta (k,k,), describing two one-particie states in the same band, ie.
ny = n, With the energy £ and momentum K satisfying: (ii) 2[sin(K)| < |E[ <
4|sin ( K /2) | or (iii) | E] < 2[sin (X&) |, (two dashed areas on figure 1) the two-particie
state includes two pairs of one-particle states: (k,k,) and (4,4,) (solutions of the
corresponding systems of equation (3)) with the same (case (ii)) or different (case
(iii)) band indexes, i.e. n, # n,.

Total energy B

—xf2 0 a2

Total quasi-mornentem K

Figure 1. Two-electron states and the bound singlet states of two electrons. Undashed
areas indicate the energy spectrum of triplet two-glectron states (with singlet states lying
only along the border). The two dashed areas correspond to the two-electron states, for
which both the systems, equation (2), are soluble. The bound states energy spectrum for
a =3, # =25 is shown by the solid curve.

The two-particle S-matrix can be obtained by solving Shrédinger’s equation, which
is a matrix equation for the four-component wave function ¥, . (z,, ;). Then, the
most general form of the two-electron wave function is given by the direct product
of the one-electron wave functions, equation (2):

Vo021 < 23) = Aa,az(5*'1"“2)1»"";;1(‘”1)11’;;2(3’2) = Aalaz(kzkl)¢§2(ml)wﬁl(SZ)
+ Aom(‘il‘iz)‘/’ql(ml)‘f’g,(mz) - Aam(‘iz‘il)%z(%)%l(m‘z)
U, 0(2 > 23) = Aaza,(kzkl)lb;;l(‘ct)%z(l"z) - Aam(Elkz)wkz(wl)%l(%)
+ Aoga,(@2@1)¢§1(31)¢§2(12) - Agw,(éﬁz)ﬁbﬁ(l‘l)"J’gl(l'z)
where pairs of one-particle quasi-momenta (k,k,) and (§,§,) are determined from

equation (3). It is easy to show that the wave function, equation (4), satisfies the
Shrodinger equation for any z; # x,. The corresponding eigenvalue E is given by
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equation (3). From the continuity of ¥ . (z,,2,) at x; = =, the two following
equations for coefficients A can be easily derived:

Ao lliky) — A, (koky) = A, (Rpky) — Ay (eyks)

- iy - (3)

Aa'lo'g(qlth) - Aa;az(qqu) = Aaza:(QZQI) - Ao-za-,(QIQZ)'
Finally, our wave function must satisfy the Shrodinger equations with the same energy
E (which follows from equation (1)) at x; = x,, when the electrons have the same

coordinates. The corresponding equations for the sites a and b of the unit cell m are
of the form:

- {‘pﬂ'tat(zm 2m ~ 1) + ‘I‘mo'z(zm - 1 zm) + q’o’;d;(zm?zm + 1)

Wy, (Zmek1,2m) b= ab,, o, Wy, (2ms2m) = EY,,,, (2m, Zn'g))
(
~{ oo (2m + 1,2m 4+ 2) 4 ¥, (2m + 2,2m + 1) + ¥, (2m + 1,2m)

U gy (2m,2m o+ 1)} 4 065, 0, ¥ (2m + 1,2m + 1)
= EV¥ . ,,(2m+1,2m + 1).
Equations (5) and (6) must be solved now as a set of four linear equations on eight

undefined coefficients 4 in equation (4). As a result of the solution, we determine
four of these constants as linear combinations of the others:

A gy (aky) = SZTH (1 F)(812)) Aoy (n )

+ S5k k) (0162) A gt (d162) Q)
(expressions for A, ,.(§;q;) are the same as those in equation (7) after the substitu-
tion k —~ ¢). Here we assume summation over spin indexes o} and o}. Coefficients
.S’;’f;’i and .§'§;§5 have the physical meaning of S-matrices of electron-electron scat-
tering. While S""” describes processes with conservation of the initial one-particle

momenta &, and kz (electrons exchange their quasi-momenta), Sa;",f corresponds
to the Umklapp processes, in which the total momentum k&, + k, is reduced by the
magnitude of the inverse lattice vector G = w, 50 that the ouf-momenta ¢, and 4,
are to be determined from equation (3). To write down the explicit form of matrices
S and § it is convenient to use the following parameterization of the one-particle
momenta:

I, = +sin(k;)  and . = 4sin(g;)
where signs 4(~) correspond to the band mdexes n; = 1(2) respectwely
With such parameterization, solutions for matrices .S'f,';f,’: and SG,"’2 are given by:
oo} — Hp+ '5/21) .
Seiei ) = GV T (& E €7) i
+ (n/2) + (u+ £/20)E/2 5. 6.
(n/20 + (u +E/BY+ E/B) i ®
Saict{in} = T (n/2) ba10, 6010
172 Y T ¥ e ) et

#(n/2) i
(n/2)2 + (u+ E/2i)(1+ £/20) Sot0,8030,
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where n = 8+ af2, E =a—-6/2, I=1; -1, and g = jy — u,.

For 8 = —a, corresponding to the case of a 1D lattice with one type of electron
correlation (simple Hubbard chain), § vanishes and for § we obtain the well-known
result of Lieb and Wu [12].

Matrices Sf;"fr’ and S"l“’: provide a complete picture of electron—electron scat-
tering on a one-dimensional lattice with two types of electron—¢lectron correlation.
The kinematics of the scattering in terms of {; and u; follow from the conservation
laws, equation (3), i.e. x; and u, are related to {; and {, as follows:

o=l =+ 7 41— G128
(e +p2)(h + L) = [\/1—523:\/1—12]

Here the upper (lower) sign corresponds to the same (different) one-electron band
indexes: ny = n, = ny = ny (n, # ny and aj # ny).

If the initial one-particle momenta k; and &, describe electrons in the same band
(ie. n; = n,) and parameters {, and [, satisfy

(L4 L)Y <4y/1-8/1-12 (10)

then solutions for p, and u,, derived from equation (9), are complex, with non-
zero imaginary parts. To eliminate the corresponding divergent terms, arising from
exponents with complex quasi-momenta ¢, and §, in the expression for our wave
function, equatit?n (4),.we set A,.,.(4;4;) = Aa.-a,-( 4;4;) = 0, and for four other
constants A we immediately get:

(ki) =

®

0'10'2 0'10'2

(kpky) = CO + C®¢; ¢

i i (11)
Ao‘ga’,(kzkl) = Aazﬂl(klkz) =™ _ C(S)éfc

1272

Here coefficients C(1 and C®) define respectively anti-symmetric (triplet) and sym-
metric (singlet) parts of the two-electron coordinate wave function, given by equa-
tion (4). The corresponding region of two-electron states is shown on figure 1, where
only triplet states exist within the undashed area, and singlet states with &k, = k, are
realized on its border. For the rest of the (fc1 fcz) pairs (those which do not satisfy
equation (10)) solutions ; and ., derived from equation (9) are real, so that the
corresponding momenta ¢, and g, together with k; and k, represent the set of the
out-states, into which the initial electrons with momenta k,, k, can be scattered.

We can now investigate the ground-state and low-energy excitations of our two-
particle system. If one of the electron-¢lectron cortelation potentials corresponds to
the on-site attraction, singlet bound states of two electrons exist in the system. The
energy spectrum E(K) of these states can be obtained from the poles of S-matrix.
The corresponding equation, derived from equation (8), is of the form:

\/ E? — 16c0s? ‘;—" \/ E? — 16sin? f;-

+ ? {\/EZ — 16(:052%L + \/E2 - lﬁsinzg} —ad =0

(12)
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Each such bound state is formed by two pairs of complex one-particle momenta (the
so-called strings, discussed in [14]):

K . K G, -
kya = > +iy Q2= 5 = -Esm(K) +i5.
where E = —4cosK/2cothy = —4[sinf{/2|coth¥y. The corresponding spectrum,
derived from equation (12) for « = 3 and 8 = 5, is shown on figure 1.
Analysis of equation {12) shows that, whereas for the values of the total momen-
tum lying near the Brillouin zone boundary, solutions of equation (12) exist even for
arbitrary weak attraction, the ground state (with K = 0) will be a bound state only

if o and g obey:

2
azﬁ—f—i. e S (13)

In the opposite case the ground state will be a non-bound state of two electrons with
quasi-momenta k, = k, = 0. It follows from (4) and (11) that the corresponding
two-particle state will be a singlet, in agreement with the theorem proved by Lieb
and Mattis [15]. Figure 2 shows two corresponding regions on the («, 3)-plane.

s ¥
8 Bound states
g
2
=3
=
e
®
& NN
-5 N ™
N \, . \\\1\

Repulsive potential 3

Figure 2, The ground-state phase diagram.

In conclusion, we have analysed the two-electron problem for a chain with two
sorts of on-site clectron-electron correlation: attractive U, and repulsive Uy, on the
neighbouring sites a and b, respectively. The S-matrix of electron-electron scatter-
ing was derived. It was shown that translational properties of the lattice result in
remarkably different (from that of the simple Hubbard chain) kinematics of electron-
electron scattering. Presence of the Umklapp processes leads to the appearence of
extra (in addition to those participating in the scattering as initial) one-eiectron mo-
menta. It does not rule out, of course, the possibility of obtaining an exact solution
to the many-electron problem, but the ordinary Bethe ansatz should be modified to
account for additional one-particle quasi-momenta which will subsequently appear in
the N-particle wave function.

We have also investigated ground-state properties of such a two-electron system
and obtained the ground-state phase diagram (see figure 2). Equation (13) indicates
that the ground-state properties of the system with both types of electron—electron
interaction (attractive and repulsive) depend on competition between the correlation
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potentials. It may happen that for a many-particle system this competition can result
in dependence of the ground-state properties upon the total concentration of particles.
Thus, if the bare correlation energies in the Hamiltonian, equation (1), are such that
(@, 8) lie near the critical curve, equation (13), renormalization of the interaction,
which can arise from doping of the system by additional electrons, will lead to the
dramatic change in the ground-state properties, for example, to the decay of initially
bound pairs. As a result, the system would lose its superconducting properties,
associated with formation of the bound states. We believe that this phenomenon,
if exists, could be an explanation for the disappearance of superconductivity with
doping, as observed in high-T, cuprate superconductors.

We would like to thank Dr M A Baranov and our collcagues on the HTSC seminar
of the Moscow Engineering Physics Institute for useful and helpful discussions.
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